Premium
Contrasting the responses of three different ground‐based instruments to energetic electron precipitation
Author(s) -
Rodger Craig J.,
Clilverd Mark A.,
Kavanagh Andrew J.,
Watt Clare E. J.,
Verronen Pekka T.,
Raita Tero
Publication year - 2012
Publication title -
radio science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 84
eISSN - 1944-799X
pISSN - 0048-6604
DOI - 10.1029/2011rs004971
Subject(s) - riometer , electron precipitation , substorm , atmospheric sciences , van allen radiation belt , physics , ionosphere , daytime , plasmasphere , environmental science , magnetosphere , geophysics , magnetic field , quantum mechanics
In order to make best use of the opportunities provided by space missions such as the Radiation Belt Storm Probes, we determine the response of complementary subionospheric radiowave propagation measurements (VLF), riometer absorption measurements, cosmic noise absorption, and GPS‐produced total electron content (vTEC) to different energetic electron precipitation (EEP). We model the relative sensitivity and responses of these instruments to idealized monoenergetic beams of precipitating electrons, and more realistic EEP spectra chosen to represent radiation belts and substorm precipitation. In the monoenergetic beam case, we find riometers are more sensitive to the same EEP event occurring during the day than during the night, while subionospheric VLF shows the opposite relationship, and the change in vTEC is independent. In general, the subionospheric VLF measurements are much more sensitive than the other two techniques for EEP over 200 keV, responding to flux magnitudes two‐three orders of magnitude smaller than detectable by a riometer. Detectable TEC changes only occur for extreme monoenergetic fluxes. For the radiation belt EEP case, clearly detectable subionospheric VLF responses are produced by daytime fluxes that are ∼10 times lower than required for riometers, while nighttime fluxes can be 10,000 times lower. Riometers are likely to respond only to radiation belt fluxes during the largest EEP events and vTEC is unlikely to be significantly disturbed by radiation belt EEP. For the substorm EEP case both the riometer absorption and the subionospheric VLF technique respond significantly, as does the change in vTEC, which is likely to be detectable at ∼3–4 total electron content units.