Open Access
Convective activity in Mato Grosso state (Brazil) from microwave satellite observations: Comparisons between AMSU and TRMM data sets
Author(s) -
Funatsu Beatriz M.,
Dubreuil Vincent,
Claud Chantal,
Arvor Damien,
Gan Manoel A.
Publication year - 2012
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2011jd017259
Subject(s) - advanced microwave sounding unit , climatology , convection , depth sounding , environmental science , outgoing longwave radiation , diurnal cycle , convective available potential energy , precipitation , satellite , monsoon , atmospheric sciences , meteorology , geology , geography , physics , oceanography , astronomy
We present a characterization of convective activity at sub‐regional scale from two sets of satellite‐based microwave observations: the Advanced Microwave Sounding Unit (AMSU) and the combined Tropical Rainfall Measuring Mission (TRMM) microwave imager and precipitation radar data, for the period 2001 to 2011. We focus on the state of Mato Grosso, Brazil, located at the southern edge of the so‐called “Legal Amazon” which has undergone intense land cover transformation in the last 4 decades. The annual cycle of mean convective activity described by AMSU and TRMM are in good agreement, with a correlation close to 0.80. The mean amplitude of convective activity is maximal early in the rainy season, except for AMSU deep convective area, which presents a maximum in January. The diurnal cycle of convection was examined for the period 2003 to 2007, and it was found that convection is maximal near 1500 local time (LT) and minimal around 0700 LT. Unlike the amplitude, the phase shows little intraseasonal and interannual variability. A slight decrease in convective activity in the studied period was found, possibly indicating an extension of the dry season. Comparisons of convective activity between deforested and forested areas showed no significant differences in the phase of the diurnal cycle, but our analysis shows a tendency for increase (decrease) in convection in deforested (forested) areas for the period considered. A longer time series is however necessary in order to strengthen the robustness of our results.