z-logo
open-access-imgOpen Access
Chemistry climate model simulations of the effect of the 27 day solar rotational cycle on ozone
Author(s) -
Kubin A.,
Langematz U.,
Brühl C.
Publication year - 2011
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2011jd015665
Subject(s) - stratosphere , atmospheric sciences , ozone , mesosphere , solar irradiance , environmental science , irradiance , solar cycle , flux (metallurgy) , ozone layer , atmosphere (unit) , diurnal cycle , solar constant , climatology , physics , meteorology , chemistry , geology , solar wind , organic chemistry , quantum mechanics , magnetic field
The results from two simulations with the coupled chemistry climate model (CCM) ECHAM5/MESSy (EMAC‐FUB) are analyzed for the effect of solar variability at the 27 day rotational time scale on ozone. One simulation is forced with constant spectral irradiances at the top of the atmosphere and the other one with daily varying irradiances using data of 1 year for solar maximum conditions. Consistent changes are applied to the photolysis scheme of the model. The model results show the main features of observed correlations between ozone and solar irradiance variability with a maximum positive correlation in the upper stratosphere and an anticorrelation in the mesosphere. The relative sensitivity of upper stratospheric ozone to changes in the solar ultraviolet flux is estimated to be 0.3 to 0.4% per 1% change in 205 nm flux. During periods of strong 27 day variability, a similar upper stratospheric ozone sensitivity is derived. However, when the daily solar irradiance variability is weak and dominated by the 13.5 day period, the ozone sensitivity is reduced in the subtropics. The modeled temperature response is consistent with the ozone signal. When averaged over one rotational cycle, the ozone and temperature response to a neglect of the 27 day cycle is weak and statistically insignificant in the stratosphere but of nonnegligible magnitude and statistically significant in the equatorial mesosphere. Our results suggest that ignoring daily solar flux variations on the 27 day time scale in transient CCM simulations does not lead to a significant degradation of the time mean ozone response in the stratosphere, while in the tropical mesosphere, significant errors of up to 3% may occur. This result does not exclude potential additional effects of 27 day solar cycle variability on stratospheric dynamics in winter which were, however, not the subject of this study.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here