
Modeling waves and wind stress
Author(s) -
Donelan M. A.,
Curcic M.,
Chen S. S.,
Magnusson A. K.
Publication year - 2012
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2011jc007787
Subject(s) - swell , wind wave , buoy , wind speed , meteorology , wave model , geology , drag coefficient , significant wave height , wind stress , storm , environmental science , drag , atmospheric sciences , mechanics , physics , oceanography
A model for wave and wind stress prediction is constructed. The source functions that drive the space‐time evolution of the energy spectra are developed in form based on theory and laboratory and field experiments. The calibration factors (proportionality constants of the source functions) are determined from a comparison of modeled and observed significant height and mean period. The observations are for the month of January 2005 and are derived from an array of laser range finders mounted on a bridge between two platforms in the Ekofisk oil field in the North Sea. The model calculates the form stress on the waves and adds it vectorially to the sheltering‐modified skin stress. The resulting drag coefficient versus wind speed is shown to have the observed structure: low in light winds, increasing in moderate winds, and increasing more slowly in very strong winds. Modeled spectral shapes in the four quadrants of Hurricane Bonnie (1998) match the Scanning Radar Altimeter measurements. Modeled spectral properties in Hurricane Ike (2008) are compared against NDBC buoy estimates with good results. Drag coefficients in the mixed seas produced by hurricanes show dependence on wave age of the wind sea, swell propagation direction, and water depth. The need for wave and stress modeling for atmosphere‐ocean coupling is emphasized. The new wave model has all the necessary attributes to be the basis for such a coupler.