z-logo
Premium
Mechanisms of an extraordinary East Asian summer monsoon event in July 2011
Author(s) -
Seo KyongHwan,
Son JunHyeok,
Lee SeungEon,
Tomita Tomohiko,
Park HyoSeok
Publication year - 2012
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2011gl050378
Subject(s) - rossby wave , climatology , teleconnection , east asia , subtropical ridge , geology , subtropics , east asian monsoon , monsoon , oceanography , rainband , thermohaline circulation , precipitation , china , geography , tropical cyclone , meteorology , el niño southern oscillation , archaeology , fishery , biology
Previous studies have demonstrated that the strong East Asian summer monsoon results mainly from the westward intensification of the North Pacific subtropical high (NPSH), or equivalently, the enhancement of the western North Pacific subtropical high. However, during early July in 2011 a strong southerly or southeasterly moist flow gave rise to a large amount of precipitation over southwestern Japan and Korea and anomalous dry conditions over central China because of the extraordinary intensification of the NPSH to the north. The formation of the anomalous high that occurred to the east of central Japan during early July is very rare, and its physical mechanisms are investigated in this study. The regressed circulation anomalies and wave‐activity flux vectors for July 2011 and data from the previous 32 years show that two teleconnection patterns due to Rossby wave trains are the most important mechanisms: Rossby wave propagation from the eastern North Atlantic and western Europe to East Asia following the North Eurasian jet and East Asian jet in the upper level, and northward propagation of Rossby waves forced by diabatic heating over the western North Pacific (WNP) region in the lower level. This simultaneous forcing of a significant negative phase of the summertime North Atlantic Oscillation in the higher latitudes and enhanced diabatic heating over the subtropical WNP is found to be the cause of the abnormal development of the anomalous high to the east of central Japan, resulting in extremely wet conditions in Korea and southern Japan and dry conditions in southern China.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here