z-logo
Premium
Impact of the Atlantic warm pool on United States landfalling hurricanes
Author(s) -
Wang Chunzai,
Liu Hailong,
Lee SangKi,
Atlas Robert
Publication year - 2011
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2011gl049265
Subject(s) - climatology , environmental science , meteorology , atlantic hurricane , geology , oceanography , geography , tropical cyclone
The 2010 Atlantic hurricane season was extremely active, but no hurricanes made landfall in the United States, raising a question of what dictated the hurricane track. Here we use observations from 1970–2010 (also extending back to 1950) and numerical model experiments to show that the Atlantic warm pool (AWP) – a large body of warm water comprised of the Gulf of Mexico, the Caribbean Sea and the western tropical North Atlantic – plays an important role in the hurricane track. An eastward expansion of the AWP shifts the hurricane genesis location eastward, decreasing the possibility for a hurricane to make landfall. A large AWP also induces barotropic stationary wave patterns that weaken the North Atlantic subtropical high and produce the eastward steering flow anomalies along the eastern seaboard of the United States. Due to these two mechanisms, hurricanes are steered toward the northeast without making landfall in the United States. Although the La Niña event in the Pacific may be associated with the increased number of Atlantic hurricanes, its relationship with landfalling activity has been offset in 2010 by the effect of the extremely large AWP.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here