z-logo
Premium
Inter‐annual to multi‐decadal Arctic sea ice extent trends in a warming world
Author(s) -
Kay Jennifer E.,
Holland Marika M.,
Jahn Alexandra
Publication year - 2011
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2011gl048008
Subject(s) - climatology , environmental science , forcing (mathematics) , sea ice , arctic ice pack , arctic , global warming , arctic sea ice decline , radiative forcing , climate change , arctic geoengineering , climate model , oceanography , geology , drift ice
A climate model (CCSM4) is used to investigate the influence of anthropogenic forcing on late 20th century and early 21st century Arctic sea ice extent trends. On all timescales examined (2–50+ years), the most extreme negative observed late 20th century trends cannot be explained by modeled natural variability alone. Modeled late 20th century ice extent loss also cannot be explained by natural causes alone, but the six available CCSM4 ensemble members exhibit a large spread in their late 20th century ice extent loss. Comparing trends from the CCSM4 ensemble to observed trends suggests that internal variability explains approximately half of the observed 1979–2005 September Arctic sea ice extent loss. In a warming world, CCSM4 shows that multi‐decadal negative trends increase in frequency and magnitude, and that trend variability on 2–10 year timescales increases. Furthermore, when internal variability counteracts anthropogenic forcing, positive trends on 2–20 year timescales occur until the middle of the 21st century.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here