z-logo
Premium
The impact of detailed urban‐scale processing on the composition, distribution, and radiative forcing of anthropogenic aerosols
Author(s) -
Cohen Jason Blake,
Prinn Ronald G.,
Wang Chien
Publication year - 2011
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2011gl047417
Subject(s) - aerosol , radiative forcing , radiative transfer , environmental science , forcing (mathematics) , atmospheric sciences , meteorology , scale (ratio) , atmosphere (unit) , climatology , geography , physics , geology , optics , cartography
Detailed urban‐scale processing has not been included in global 3D chemical transport models due to its large computational demands. Here we present a metamodel for including this processing, and compare it with the use of the traditional approach of dilution of emissions into large grid boxes. This metamodel is used in a global 3D model to simulate the effects of cities around the world on aerosol chemistry, physics, and radiative effects at the global scale. We show that the biases caused by ignoring urban processing on the global values of total aerosol surface concentration, the total aerosol column abundance, the aerosol optical depth (AOD), the absorbing aerosol optical depth (AAOD), and the top of the atmosphere radiative forcing (TOA) respectively are +26 ± 3 2 %, +51 ± 10 12 %, +42 ± 8 10 %, +8 ± 16 18 %, and −0.27 ± 0.14 0.10 W/m 2 . These results show that failure to consider urban scale processing leads to significantly more negative aerosol radiative forcing compared to when detailed urban scale processing is considered.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here