
The nature of the crust beneath the Afar triple junction: Evidence from receiver functions
Author(s) -
Hammond J. O. S.,
Kendall J.M.,
Stuart G. W.,
Keir D.,
Ebinger C.,
Ayele A.,
Belachew M.
Publication year - 2011
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1029/2011gc003738
Subject(s) - geology , rift , crust , continental crust , magmatism , oceanic crust , seafloor spreading , plateau (mathematics) , mafic , flood basalt , paleontology , volcanism , tectonics , subduction , mathematical analysis , mathematics
The Afar depression is an ideal locale to study the role of extension and magmatism as rifting progresses to seafloor spreading. Here we present receiver function results from new and legacy experiments. Crustal thickness ranges from ∼45 km beneath the highlands to ∼16 km beneath an incipient oceanic spreading center in northern Afar. The crust beneath Afar has a thickness of 20–26 km outside the currently active rift segments and thins northward. It is bounded by thick crust beneath the highlands of the western plateau (∼40 km) and southeastern plateau (∼35 km). The western plateau shows V P / V S ranging between 1.7–1.9, suggesting a mafic altered crust, likely associated with Cenozoic flood basalts, or current magmatism. The southeastern plateau shows V P / V S more typical of silicic continental crust (∼1.78). For crustal thicknesses <26 km, high V P / V S (>2.0) can only be explained by significant amounts of magmatic intrusions in the lower crust. This suggests that melt emplacement plays an important role in late stage rifting, and melt in the lower crust likely feeds magmatic activity. The crust between the location of the Miocene Red Sea rift axis and the current rift axis is thinner (<22 km) with higher V P / V S (>2.0) than beneath the eastern part of Afar (>26 km, V P / V S < 1.9). This suggests that the eastern region contains less partial melt, has undergone less stretching/extension and has preserved a more continental crustal signature than west of the current rift axis. The Red Sea rift axis appears to have migrated eastward through time to accommodate the migration of the Afar triple junction.