z-logo
open-access-imgOpen Access
Effect of a metallic core on transient geomagnetic induction
Author(s) -
Velímský J.,
Finlay C. C.
Publication year - 2011
Publication title -
geochemistry, geophysics, geosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.928
H-Index - 136
ISSN - 1525-2027
DOI - 10.1029/2011gc003557
Subject(s) - earth's magnetic field , ring current , geomagnetic storm , geophysics , inner core , amplitude , ionospheric dynamo region , core (optical fiber) , geology , electromagnetic induction , magnetic field , storm , field (mathematics) , transient (computer programming) , computational physics , physics , meteorology , optics , quantum mechanics , computer science , operating system , mathematics , pure mathematics , electromagnetic coil
Magnetic fields due to the magnetospheric ring current, together with their induced counterparts, must be correctly taken into account when modeling the geomagnetic field using modern observatory and satellite measurements. It is common practice to parameterize the induced field using a response function depending on a spherically symmetric electrical conductivity model of the solid Earth. Here we show that Earth's metallic core should be included in such conductivity models, which has not previously been the case. Abrupt changes in the amplitude of the ring current during geomagnetic storms excite a wide range of frequencies, some of which can induce electrical currents in the core. These currents decay very slowly because of the high conductivity of the core; the resulting induced field will therefore not be of zero mean even when averaged over many years. We present the results of time domain numerical simulations of induction that demonstrate the influence of a conducting core in an idealized experiment based on a synthetic geomagnetic storm. Moving to a more realistic scenario we show that taking 50 years of D st ( t ) index as an input, an induced field I st ( t ) with a mean value (when averaged over 10 years) of up to −1.5 nT is obtained. We conclude that transient induction in the metallic core caused by magnetospheric field variations must be included in accurate portrayals of the near‐Earth magnetic environment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here