z-logo
Premium
Detecting evidence for CO 2 fertilization from tree ring studies: The potential role of sampling biases
Author(s) -
Brienen Roel J. W.,
Gloor Emanuel,
Zuidema Pieter A.
Publication year - 2012
Publication title -
global biogeochemical cycles
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.512
H-Index - 187
eISSN - 1944-9224
pISSN - 0886-6236
DOI - 10.1029/2011gb004143
Subject(s) - survivorship curve , sampling (signal processing) , tree (set theory) , dendrochronology , sampling bias , population , growth rate , biology , statistics , ecology , mathematics , demography , sample size determination , geometry , combinatorics , physics , paleontology , sociology , detector , optics
Tree ring analysis allows reconstructing historical growth rates over long periods. Several studies have reported an increasing trend in ring widths, often attributed to growth stimulation by increasing atmospheric CO 2 concentration. However, these trends may also have been caused by sampling biases. Here we describe two biases and evaluate their magnitude. (1) The slow ‐ grower survivorship bias is caused by differences in tree longevity of fast‐ and slow‐growing trees within a population. If fast‐growing trees live shorter, they are underrepresented in the ancient portion of the tree ring data set. As a result, reconstructed growth rates in the distant past are biased toward slower growth. (2) The big ‐ tree selection bias is caused by sampling only the biggest trees in a population. As a result, slow‐growing small trees are underrepresented in recent times as they did not reach the minimum sample diameter. We constructed stochastic models to simulate growth trajectories based on a hypothetical species with lifetime constant growth rates and on observed tree ring data from the tropical tree Cedrela odorata . Tree growth rates used as input in our models were kept constant over time. By mimicking a standard tree ring sampling approach and selecting only big living trees, we show that both biases lead to apparent increases in historical growth rates. Increases for the slow‐grower survivorship bias were relatively small and depended strongly on assumptions about tree mortality. The big‐tree selection bias resulted in strong historical increases, with a doubling in growth rates over recent decades. A literature review suggests that historical growth increases reported in many tree ring studies may have been partially due to the big‐tree sampling bias. We call for great caution in the interpretation of historical growth trends from tree ring analyses and recommend that such studies include individuals of all sizes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here