Premium
Temporal dynamics of model parameter sensitivity for computationally expensive models with the Fourier amplitude sensitivity test
Author(s) -
Reusser D. E.,
Buytaert W.,
Zehe E.
Publication year - 2011
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2010wr009947
Subject(s) - sensitivity (control systems) , sobol sequence , identifiability , amplitude , fourier transform , computer science , fourier analysis , mathematics , machine learning , physics , mathematical analysis , engineering , electronic engineering , quantum mechanics
The quest for improved hydrological models is one of the big challenges in hydrology. When discrepancies are observed between simulated and measured discharge, it is essential to identify which algorithms may be responsible for poor model behavior. Particularly in complex hydrological models, different process representations may dominate at different moments and interact with each other, thus highly complicating this task. This paper investigates the analysis of the temporal dynamics of parameter sensitivity as a way to disentangle the simulation of a hydrological model and identify dominant parameterizations. Three existing methods (the Fourier amplitude sensitivity test, the extended Fourier amplitude sensitivity test, and Sobol's method) are compared by applying them to a TOPMODEL implementation in a small mountainous catchment in the tropics. For the major part of the simulation period, the three methods give comparable results, while the Fourier amplitude sensitivity test is much more computationally efficient. This method is also applied to the complex hydrological model WaSiM‐ETH implemented in the Weisseritz catchment, Germany. A qualitative model validation was performed on the basis of the identification of relevant model components. The validation revealed that the saturation deficit parameterization of WaSiM‐ETH is highly susceptible to parameter interaction and lack of identifiability. We conclude that temporal dynamics of model parameter sensitivity can be a powerful tool for hydrological model analysis, especially to identify parameter interaction as well as the dominant hydrological response modes. Finally, an open source implementation of the Fourier amplitude sensitivity test is provided.