z-logo
Premium
Assessing the detail needed to capture rainfall‐runoff dynamics with physics‐based hydrologic response simulation
Author(s) -
Mirus Benjamin B.,
Ebel Brian A.,
Heppner Christopher S.,
Loague Keith
Publication year - 2011
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2010wr009906
Subject(s) - surface runoff , evapotranspiration , environmental science , low impact development , representation (politics) , hydrology (agriculture) , boundary value problem , hydrological modelling , base flow , computer science , geology , mathematics , climatology , cartography , geography , geotechnical engineering , ecology , drainage basin , mathematical analysis , stormwater , politics , political science , law , biology , stormwater management
Concept development simulation with distributed, physics‐based models provides a quantitative approach for investigating runoff generation processes across environmental conditions. Disparities within data sets employed to design and parameterize boundary value problems used in heuristic simulation inevitably introduce various levels of bias. The objective was to evaluate the impact of boundary value problem complexity on process representation for different runoff generation mechanisms. The comprehensive physics‐based hydrologic response model InHM has been employed to generate base case simulations for four well‐characterized catchments. The C3 and CB catchments are located within steep, forested environments dominated by subsurface stormflow; the TW and R5 catchments are located in gently sloping rangeland environments dominated by Dunne and Horton overland flows. Observational details are well captured within all four of the base case simulations, but the characterization of soil depth, permeability, rainfall intensity, and evapotranspiration differs for each. These differences are investigated through the conversion of each base case into a reduced case scenario, all sharing the same level of complexity. Evaluation of how individual boundary value problem characteristics impact simulated runoff generation processes is facilitated by quantitative analysis of integrated and distributed responses at high spatial and temporal resolution. Generally, the base case reduction causes moderate changes in discharge and runoff patterns, with the dominant process remaining unchanged. Moderate differences between the base and reduced cases highlight the importance of detailed field observations for parameterizing and evaluating physics‐based models. Overall, similarities between the base and reduced cases indicate that the simpler boundary value problems may be useful for concept development simulation to investigate fundamental controls on the spectrum of runoff generation mechanisms.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here