z-logo
open-access-imgOpen Access
Temporal observations of bright soil exposures at Gusev crater, Mars
Author(s) -
Rice M. S.,
Bell J. F.,
Cloutis E. A.,
Wray J. J.,
Herkenhoff K. E.,
Sullivan R.,
Johnson J. R.,
Anderson R. B.
Publication year - 2011
Publication title -
journal of geophysical research: planets
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2010je003683
Subject(s) - mars exploration program , impact crater , aeolian processes , geology , multispectral image , spectral signature , astrobiology , mineralogy , remote sensing , geomorphology , physics
The Mars Exploration Rover Spirit has discovered bright soil deposits in its wheel tracks that previously have been confirmed to contain ferric sulfates and/or opaline silica. Repeated Pancam multispectral observations have been acquired at four of these deposits to monitor spectral and textural changes over time during exposure to Martian surface conditions. Previous studies suggested that temporal spectral changes occur because of mineralogic changes (e.g., phase transitions accompanying dehydration). In this study, we present a multispectral and temporal analysis of eight Pancam image sequences at the Tyrone exposure, three at the Gertrude Weise exposure, two at the Kit Carson exposure, and ten at the Ulysses exposure that have been acquired as of sol 2132 (1 January 2010). We compare observed variations in Pancam data to spectral changes predicted by laboratory experiments for the dehydration of ferric sulfates. We also present a spectral analysis of repeated Mars Reconnaissance Orbiter HiRISE observations spanning 32 sols and a textural analysis of Spirit Microscopic Imager observations of Ulysses spanning 102 sols. At all bright soil exposures, we observe no statistically significant spectral changes with time that are uniquely diagnostic of dehydration and/or mineralogic phase changes. However, at Kit Carson and Ulysses, we observe significant textural changes, including slumping within the wheel trench, movement of individual grains, disappearance of fines, and dispersal of soil clods. All observed textural changes are consistent with aeolian sorting and/or minor amounts of air fall dust deposition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here