z-logo
open-access-imgOpen Access
Jarosite in a Pleistocene East African saline‐alkaline paleolacustrine deposit: Implications for Mars aqueous geochemistry
Author(s) -
McHenry Lindsay J.,
Chevrier Vincent,
Schröder Christian
Publication year - 2011
Publication title -
journal of geophysical research: planets
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2010je003680
Subject(s) - jarosite , geology , geochemistry , alunite , mineralogy , mineral , electron microprobe , feldspar , pyrite , chemistry , quartz , hydrothermal circulation , paleontology , organic chemistry
Jarosite occurs within altered tephra from the saline‐alkaline paleolake deposits of Pliocene‐Pleistocene Olduvai Gorge, Tanzania. Zeolites (mainly phillipsite), authigenic K‐feldspar, and Mg/Fe‐smectites dominate the mineral assemblage, indicating saline‐alkaline diagenetic conditions (pH > 9). As jarosite is ordinarily an indicator of acidic conditions on Earth and Mars, its association with such undisputed high‐pH indicators is unexpected. Of 55 altered tephra samples collected from the paleolake basin and margin deposits, eleven contained jarosite detectable by X‐ray Diffraction (XRD) (>0.15%). Mössbauer spectroscopy, Fourier Transform Infrared Reflectance (FTIR), Electron Probe Microanalysis (EPMA), X‐ray Fluorescence (XRF), and Scanning Electron Microscopy (SEM) analyses confirm the presence and nature of the jarosite. This paper documents this occurrence and presents mechanisms that could produce this unusual and contradictory mineral assemblage. We favor a mechanism by which jarosite formed recently, perhaps as modern ground and meteoric water interacted with and oxidized paleolacustrine pyrite, providing local and temporary acidic conditions. However, local groundwater (at modern springs) has a pH > 9. In recent studies of Mars, the presence of jarosite or other Fe or Mg sulfates is often used to indicate dominantly acidic conditions. Regardless, the current study shows that jarosite can form in sediments dominated by alkaline minerals and solutions. Its coexistence with Mg/Fe smectites in particular makes it relevant to recent observations of Martian paleolakes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here