z-logo
open-access-imgOpen Access
Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening
Author(s) -
Christensen Matthew W.,
Stephens Graeme L.
Publication year - 2011
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2010jd014638
Subject(s) - marine stratocumulus , mesoscale meteorology , environmental science , liquid water path , aerosol , effective radius , drizzle , atmospheric sciences , liquid water content , cloud computing , meteorology , oceanography , geology , physics , computer science , operating system , quantum mechanics , galaxy
Ship tracks observed by the Cloud‐Aerosol Lidar with Orthogonal Polarization (CALIOP) were analyzed to determine the extent to which aerosol plumes from ships passing below marine stratocumulus alter the microphysical and macrophysical properties of the clouds. Moderate Resolution Imaging Spectroradiometer (MODIS) imagery was used to distinguish ship tracks embedded in closed, open, and undefined mesoscale cellular cloud structures. The impact of aerosol on the microphysical cloud properties in both the closed and open cell regimes were consistent with the changes predicted by the Twomey hypothesis. For the macrophysical changes, differences were observed between regimes. In the open cell regime, polluted clouds had significantly higher cloud tops (16%) and more liquid water (39%) than nearby unpolluted clouds. However, in the closed cell regime, polluted clouds exhibited no change in cloud top height and had less liquid water (−6%). Both microphysical (effective radius) and macrophysical (liquid water path) cloud properties contribute to a fractional change in cloud optical depth; in the closed cell regime the microphysical contribution was 3 times larger than the macrophysical contribution. However, the opposite was true in the open cell regime where the macrophysical contribution was nearly 2 times larger than the microphysical contribution because the aerosol probably increased cloud coverage. The results presented here demonstrate key differences aerosols have on the microphysical and macrophysical responses of boundary layer clouds between mesoscale stratocumulus convective regimes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here