z-logo
open-access-imgOpen Access
Pc3 pulsations in the polar cap and at low latitude
Author(s) -
De Lauretis M.,
Francia P.,
Regi M.,
Villante U.,
Piancatelli A.
Publication year - 2010
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2010ja015967
Subject(s) - polar , daytime , geology , interplanetary magnetic field , physics , earth's magnetic field , geophysics , geodesy , atmospheric sciences , solar wind , magnetic field , astronomy , quantum mechanics
We present a statistical analysis of Pc3–4 pulsations during 2005 at two polar cap stations (Terra Nova Bay and Dome C, Antarctica) and, for comparison, at a low‐latitude station (L'Aquila). The analysis technique allows to discriminate the signal component from the background noise in the power spectrum and to determine the frequency of such ULF signal, commonly associated to the upstream wave source. The comparison of data makes evident that the characteristics of the ULF pulsations are different at low and high latitudes, and significant differences emerge also between the two polar cap stations. At Dome C the ULF signals are observed during the whole day, while at Terra Nova Bay and at L'Aquila the signals are mainly observed in the dayside sector. The different cone angle dependence at L'Aquila and Dome C, the steeper slope in the frequency dependence on the interplanetary magnetic field strength at Dome C with respect to L'Aquila and Terra Nova Bay and the time dependence of the coherence between pulsations at the Antarctic stations suggest that at low‐latitude waves are transmitted to the ground from a region close to the subsolar bow shock, while near the geomagnetic pole waves are mainly transmitted through the magnetotail lobes. At Terra Nova Bay, where the local field lines approach the cusp around noon and are stretched into the magnetotail around midnight, the transmission path seems to be time dependent, with daytime and nighttime pulsations penetrating through the subsolar point and via the magnetotail lobes, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here