z-logo
Premium
Maximum discharge from snowmelt in a changing climate
Author(s) -
Molini Annalisa,
Katul Gabriel G.,
Porporato Amilcare
Publication year - 2011
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2010gl046477
Subject(s) - snowmelt , environmental science , climatology , climate change , atmospheric sciences , meteorology , snow , hydrology (agriculture) , geology , geography , oceanography , geotechnical engineering
Predicted changes in precipitation and air temperature patterns can lead to major alterations in timing and volume of mountain snowmelt runoff with a possible increased incidence of catastrophic events such as flooding and summer droughts. Here, the role of the temperature seasonal cycle and the relative duration of cold and warm seasons on the partitioning of precipitation into snow and rainfall, snow accumulation and melting dynamics, and the resulting mountain runoff formation are investigated. Using a minimalist analytical model, it is shown that while increased air temperatures reduce snow accumulation in the winter, thus reducing the subsequent snowmelt volumes, they also intensify the rate of snowmelt, thus increasing the discharge peaks per given accumulated snow. The main consequence is the existence of an optimal energy input for which the annual peak discharge reaches an absolute maximum. Such maximum separates a cold regime, where peak discharge is limited by slow melting dynamics, from a warm regime in which peak discharge is reduced by decreased winter snow accumulation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here