Premium
Can in situ floats and satellite altimeters detect long‐term changes in Atlantic Ocean overturning?
Author(s) -
Willis Josh K.
Publication year - 2010
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2010gl042372
Subject(s) - climatology , latitude , oceanography , sea surface height , thermohaline circulation , environmental science , shutdown of thermohaline circulation , altimeter , geology , sea surface temperature , sea level , temperature salinity diagrams , salinity , north atlantic deep water , geodesy
Global warming has been predicted to slow the Atlantic Meridional Overturning Circulation (AMOC), resulting in significant regional climate impacts across the North Atlantic and beyond. Here, satellite observations of sea surface height (SSH) along with temperature, salinity and velocity from profiling floats are used to estimate changes in the northward‐flowing, upper limb of the AMOC at latitudes around 41°N. The 2004 through 2006 mean overturning is found to be 15.5 ± 2.4 Sv (10 6 m 3 /s) with somewhat smaller seasonal and interannual variability than at lower latitudes. There is no significant trend in overturning strength between 2002 and 2009. Altimeter data, however, suggest an increase of 2.6 Sv since 1993, consistent with North Atlantic warming during this same period. Despite significant seasonal to interannual fluctuations, these observations demonstrate that substantial slowing of the AMOC did not occur during the past 7 years and is unlikely to have occurred in the past 2 decades.