Premium
Effects of snow cover on soil freezing, water movement, and snowmelt infiltration: A paired plot experiment
Author(s) -
Iwata Yukiyoshi,
Hayashi Masaki,
Suzuki Shinji,
Hirota Tomoyoshi,
Hasegawa Shuichi
Publication year - 2010
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2009wr008070
Subject(s) - snowmelt , surface runoff , infiltration (hvac) , environmental science , snow , frost (temperature) , meltwater , hydrology (agriculture) , soil water , frost heaving , soil science , geology , geotechnical engineering , ecology , meteorology , geomorphology , physics , biology
A dramatic reduction in soil frost depth has been reported for Hokkaido Island of northern Japan over the last 20 years. Since soil frost strongly affects snowmelt infiltration and runoff, the reduction in frost depth may have altered the water and nutrient cycles in this region. A paired‐plot experiment was conducted in an agricultural field in Tokachi, Hokkaido, to compare the movement of soil water at different frost depths, controlled by manipulating the depth of snow cover. Snow was removed to enhance soil freezing in the treatment plot and was undisturbed in the control plot. The soil froze to a maximum depth of 0.43 m under the treatment plot and 0.11 m under the control plot. During the freezing period, the amount of upward soil water flux toward the freezing front in the treatment plot was more than double that in the control plot. During the snowmelt period, infiltration of meltwater was unimpeded by the thin frozen layer in the control plot, whereas the relatively thick frozen layer in the treatment plot impeded infiltration and generated 63 mm of runoff. These results clearly show that the changes in the timing and thickness of snow cover deposition can cause a dramatic reduction of frost depth and change in the soil water dynamics.