Premium
Kinematic and thermal evolution of the Moroccan rifted continental margin: Doukkala‐High Atlas transect
Author(s) -
Gouiza M.,
Bertotti G.,
Hafid M.,
Cloetingh S.
Publication year - 2010
Publication title -
tectonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.465
H-Index - 134
eISSN - 1944-9194
pISSN - 0278-7407
DOI - 10.1029/2009tc002464
Subject(s) - geology , rift , lithosphere , passive margin , continental margin , paleontology , continental crust , crust , seismology , thermal subsidence , tectonics , geomorphology
The Atlantic passive margin of Morocco developed during Mesozoic times in association with the opening of the Central Atlantic and the Alpine Tethys. Extensional basins formed along the future continental margin and in the Atlas rift system. In Alpine times, this system was inverted to form the High and Middle Atlas fold‐and‐thrust belts. To provide a quantitative kinematic analysis of the evolution of the rifted margin, we present a crustal section crossing the Atlantic margin in the region of the Doukkala Basin, the Meseta and the Atlas system. We construct a post‐rift upper crustal section compensating for Tertiary to present vertical movements and horizontal deformations, and we conduct numerical modeling to test quantitative relations between amounts and distribution of thinning and related vertical movements. Rifting along the transect began in the Late Triassic and ended with the appearance of oceanic crust at 175 Ma. Subsidence, possibly related to crustal thinning, continued in the Atlas rift in the Middle Jurassic. The numerical models confirm that the margin experienced a polyphase rifting history. The lithosphere along the transect preserved some strength throughout rifting with the Effective Elastic Thickness corresponding to an isotherm of 450°C. A mid‐crustal level of necking of 15 km characterized the pre‐rift lithosphere.