Premium
Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle 23
Author(s) -
Basu S.,
Basu Su.,
MacKenzie E.,
Bridgwood C.,
Valladares C. E.,
Groves K. M.,
Carrano C.
Publication year - 2010
Publication title -
radio science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 84
eISSN - 1944-799X
pISSN - 0048-6604
DOI - 10.1029/2009rs004343
Subject(s) - ionosphere , longitude , storm , geomagnetic storm , atmospheric sciences , latitude , space weather , solar cycle , f region , geophysics , physics , meteorology , geology , environmental science , magnetic field , geodesy , solar wind , quantum mechanics
Satellite communication and navigation systems operating at low latitudes suffer outages due to ionospheric scintillations during large magnetic storms that are not currently specified by any model. This paper describes and demonstrates how in the framework of an eastward electric field penetration from high to low latitudes at dusk during the main phase of a large storm, for which the rate of change of D st ≤ −50 nT/h and the D st minimum index ≤ −100 nT, it is possible to specify the longitude interval within the low‐latitude ionosphere where scintillations and plasma bubbles are most likely to occur. It is known that the eastward prompt penetration electric field becomes enhanced near sunset due to the day‐to‐night conductivity gradient. Such enhanced eastward electric fields generally set off the Rayleigh‐Taylor plasma instability at F region heights and cause the formation of plasma bubbles and irregularities of electron density that give rise to scintillations of satellite signals. We first discuss two individual magnetic storms that satisfy the criterion of large magnetic storms mentioned above and for which the onsets of the main phase are about 15 h apart. We show that the dusk sectors corresponding to these two storms are such that irregularities and scintillations were observed in the Atlantic‐Peruvian longitude sector for one storm and in the Pacific sector for the other. We then present a statistical study with 30 large magnetic storms during solar cycle 23 which satisfy the two criteria of large magnetic storms and we attempt to specify the longitude interval of irregularity and scintillation occurrence during the main phase of such storms. We have tracked globally the occurrence of equatorial scintillations during magnetic storms by the use of scintillation observations made by the Air Force Research Laboratory's Scintillation Network Decision Aid (SCINDA) network and the DMSP satellite in situ measurements of plasma bubbles at 840 km. The statistical study reveals that during large magnetic storms, scintillations and plasma bubbles occur over a specific longitude sector for which the local dusk corresponds to the time interval of the main phase of storms. The magnetic storm induced scintillations may enhance the general seasonal/longitudinal pattern of quiet time scintillations at the station but may also occur where it is least expected in accordance with climatology. The storm time response of the equatorial ionosphere discussed in this paper will be implemented in the SCINDA algorithm to enhance its capability to specify scintillations during large magnetic storms.