z-logo
open-access-imgOpen Access
Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements
Author(s) -
Hu Yongxiang,
Rodier Sharon,
Xu Kuanman,
Sun Wenbo,
Huang Jianping,
Lin Bing,
Zhai Pengwang,
Josset Damien
Publication year - 2010
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2009jd012384
Subject(s) - liquid water content , supercooling , environmental science , atmospheric sciences , water content , liquid water path , materials science , geology , meteorology , cloud computing , geography , precipitation , geotechnical engineering , computer science , operating system
The CALIOP depolarization measurements, combined with backscatter intensity measurements, are effective in discriminating between water clouds and ice clouds. The same depolarization measurements can also be used for estimating liquid water content information. Using cloud temperature information from the collocated infrared imaging radiometer measurements and cloud water paths from collocated MODIS measurements, this study compiles global statistics of the occurrence frequency, liquid water content, liquid water path, and their temperature dependence. For clouds with temperatures between −40°C and 0°C, the liquid phase fractions and liquid water paths are significantly higher than the ones from previous studies using passive remote sensing measurements. At midlatitudes, the occurrence of liquid phase clouds at temperatures between −40°C and 0°C depends jointly on both cloud height and cloud temperature. At high latitudes, more than 95% of low‐level clouds with temperatures between −40°C and 0°C are water clouds. Supercooled water clouds are mostly observed over ocean near the storm‐track regions and high‐latitude regions. Supercooled water clouds over land are observed in the Northern Hemisphere over Europe, East Asia, and North America, and these are the supercooled water clouds with highest liquid water contents. The liquid water content of all supercooled water clouds is characterized by a Gamma (Γ) distribution. The mode values of liquid water content are around 0.06 g/m 3 and are independent of cloud temperature. For temperatures warmer than −15°C, mean value of the liquid water content is around 0.14 g/m 3 . As the temperature decreases, the mean cloud liquid water content also decreases. These results will benefit cloud models and cloud parameterizations used in climate models in improving their ice‐phase microphysics parameterizations and the aviation hazard forecast.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom