Unsteady high‐pressure flow experiments with applications to explosive volcanic eruptions
Author(s) -
Orescanin M. M.,
Austin J. M.,
Kieffer S. W.
Publication year - 2010
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2009jb006985
Subject(s) - mach number , shock (circulatory) , supersonic speed , mechanics , shock diamond , shock wave , geology , jet (fluid) , physics , mach wave , volcano , shock tube , explosive eruption , vulcanian eruption , seismology , pyroclastic rock , medicine
Motivated by the hypothesis that volcanic blasts can have supersonic regions, we investigate the role of unsteady flow in jets from a high‐pressure finite reservoir. We examine the processes for formation of far‐field features, such as Mach disk shocks, by using a shock tube facility and numerical experiments to investigate phenomena to previously unobtained pressure ratios of 250:1. The Mach disk shock initially forms at the edges of the vent and moves toward the centerline. The shock is established within a few vent diameters and propagates downstream toward the equilibrium location as the jet develops. The start‐up process is characterized by two different timescales: the duration of supersonic flow at the nozzle exit and the formation time of the Mach disk shock. The termination process also is characterized by two different timescales: the travel time required for the Mach disk shock to reach its equilibrium position and the time at which the Mach disk shock begins significantly to collapse away from its equilibrium position. The critical comparisons for the formation of steady state supersonic regions are between the two start‐up timescales and the termination timescales. We conclude that for typical vulcanian eruptions and the Mount St. Helens directed blast, the Mach disk shock could have formed near the vent, and that there was time for it to propagate a distance comparable to its equilibrium location. These experiments provide a framework for analysis of short‐lived volcanic eruptions and data for benchmarking simulations of jet structures in explosive volcanic blasts.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom