
Estimating E region density profiles from radio occultation measurements assisted by IDA4D
Author(s) -
Nicolls M. J.,
Rodrigues F. S.,
Bust G. S.,
Chau J. L.
Publication year - 2009
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2009ja014399
Subject(s) - radio occultation , ionosphere , occultation , cosmic cancer database , data assimilation , radar , remote sensing , electron density , geodesy , equator , computational physics , meteorology , environmental science , physics , atmospheric sciences , geology , geophysics , latitude , electron , astronomy , computer science , telecommunications , quantum mechanics
An alternative approach for estimating E region density profiles using radio occultation total electron content (ROTEC) measurements is presented. In this approach, the F region contribution to the measured ROTEC is removed using the estimated F region from an assimilative model of ionospheric density. E region density profiles are then obtained from a numerical inversion of the residual ROTEC, which is assumed to be the E region contribution to the ROTEC. The proposed technique has been applied to radio occultation measurements made by the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), while the F region specification is obtained from the Ionospheric Data Assimilation Four‐Dimensional (IDA4D) algorithm. Examples of E region profiles obtained with this approach are presented and compared with nearby radar measurements at the magnetic equator. The results indicate that accurate estimates of the E region peak height and density can be obtained with this approach. This technique may be applicable to the estimation of E region conductivities with the global coverage provided by the radio occultation measurements.