z-logo
Premium
Contribution of land surface initialization to subseasonal forecast skill: First results from a multi‐model experiment
Author(s) -
Koster R. D.,
Mahanama S. P. P.,
Yamada T. J.,
Balsamo Gianpaolo,
Berg A. A.,
Boisserie M.,
Dirmeyer P. A.,
DoblasReyes F. J.,
Drewitt G.,
Gordon C. T.,
Guo Z.,
Jeong J.H.,
Lawrence D. M.,
Lee W.S.,
Li Z.,
Luo L.,
Malyshev S.,
Merryfield W. J.,
Seneviratne S. I.,
Stanelle T.,
van den Hurk B. J. J. M.,
Vitart F.,
Wood E. F.
Publication year - 2010
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2009gl041677
Subject(s) - initialization , forecast skill , climatology , precipitation , anomaly (physics) , environmental science , meteorology , atmosphere (unit) , quantitative precipitation forecast , magnitude (astronomy) , atmospheric sciences , geology , computer science , geography , physics , programming language , condensed matter physics , astronomy
The second phase of the Global Land‐Atmosphere Coupling Experiment (GLACE‐2) is aimed at quantifying, with a suite of long‐range forecast systems, the degree to which realistic land surface initialization contributes to the skill of subseasonal precipitation and air temperature forecasts. Results, which focus here on North America, show significant contributions to temperature prediction skill out to two months across large portions of the continent. For precipitation forecasts, contributions to skill are much weaker but are still significant out to 45 days in some locations. Skill levels increase markedly when calculations are conditioned on the magnitude of the initial soil moisture anomaly.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here