z-logo
Premium
A multiple model assessment of seasonal climate forecast skill for applications
Author(s) -
Lavers David,
Luo Lifeng,
Wood Eric F.
Publication year - 2009
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2009gl041365
Subject(s) - climatology , forecast skill , environmental science , precipitation , quantitative precipitation forecast , climate change , climate model , meteorology , geography , geology , oceanography
Skilful seasonal climate forecasts have potential to affect decision making in agriculture, health and water management. Organizations such as the National Oceanic and Atmospheric Administration (NOAA) are currently planning to move towards a climate services paradigm, which will rest heavily on skilful forecasts at seasonal (1 to 9 months) timescales from coupled atmosphere‐land‐ocean models. We present a careful analysis of the predictive skill of temperature and precipitation from eight seasonal climate forecast models with the joint distribution of observations and forecasts. Using the correlation coefficient, a shift in the conditional distribution of the observations given a forecast can be detected, which determines the usefulness of the forecast for applications. Results suggest there is a deficiency of skill in the forecasts beyond month‐1, with precipitation having a more pronounced drop in skill than temperature. At long lead times only the equatorial Pacific Ocean exhibits significant skill. This could have an influence on the planned use of seasonal forecasts in climate services and these results may also be seen as a benchmark of current climate prediction capability using (dynamic) couple models.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here