Premium
Potential impact of U.S. biofuels on regional climate
Author(s) -
Georgescu M.,
Lobell D. B.,
Field C. B.
Publication year - 2009
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2009gl040477
Subject(s) - biofuel , environmental science , climate change , climatology , natural resource economics , geology , economics , oceanography , ecology , biology
Recent work has shown that current bio‐energy policy directives may have harmful, indirect consequences, affecting both food security and the global climate system. An additional unintended but direct effect of large‐scale biofuel production is the impact on local and regional climate resulting from changes in the energy and moisture balance of the surface upon conversion to biofuel crops. Using the latest version of the WRF modeling system we conducted twenty‐four, midsummer, continental‐wide, sensitivity experiments by imposing realistic biophysical parameter limits appropriate for bio‐energy crops in the Corn Belt of the United States. In the absence of strain/crop‐specific parameterizations, a primary goal of this work was to isolate the maximum regional climate impact, for a trio of individual July months, due to land‐use change resulting from bio‐energy crops and to identify the relative importance of each biophysical parameter in terms of its individual effect. Maximum, local changes in 2 m temperature of the order of 1°C occur for the full breadth of albedo (ALB), minimum canopy resistance (RC MIN ), and rooting depth (ROOT) specifications, while the regionally (105°W–75°W and 35°N–50°N) and monthly averaged response of 2 m temperature was most pronounced for the ALB and RC MIN experiments, exceeding 0.2°C. The full range of albedo variability associated with biofuel crops may be sufficient to drive regional changes in summertime rainfall. Individual parameter effects on 2 m temperature are additive, highlight the cooling contribution of higher leaf area index (LAI) and ROOT for perennial grasses (e.g., Miscanthus) versus annual crops (e.g., maize), and underscore the necessity of improving location‐ and vegetation‐specific representation of RC MIN and ALB.