Premium
Stability of liquid saline water on present day Mars
Author(s) -
Zorzano M.P.,
MateoMartí E.,
PrietoBallesteros O.,
Osuna S.,
Renno N.
Publication year - 2009
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2009gl040315
Subject(s) - mars exploration program , perchlorate , sodium , liquid water , sodium perchlorate , astrobiology , moisture , martian , freezing point , geology , environmental chemistry , chemistry , thermodynamics , earth science , organic chemistry , physics , ion , electrode , electrochemistry
Perchlorate salts (mostly magnesium and sodium perchlorate) have been detected on Mars' arctic soil by the Phoenix lander, furthermore chloride salts have been found on the Meridiani and Gusev sites and on widespread deposits on the southern Martian hemisphere. The presence of these salts on the surface is not only relevant because of their ability to lower the freezing point of water, but also because they can absorb water vapor and form a liquid solution (deliquesce). We show experimentally that small amounts of sodium perchlorate (∼ 1 mg), at Mars atmospheric conditions, spontaneously absorb moisture and melt into a liquid solution growing into ∼ 1 mm liquid spheroids at temperatures as low as 225 K. Also mixtures of water ice and sodium perchlorate melt into a liquid at this temperature. Our results indicate that salty environments make liquid water to be locally and sporadically stable on present day Mars.