z-logo
Premium
Tsunamis and splay fault dynamics
Author(s) -
Wendt James,
Oglesby David D.,
Geist Eric L.
Publication year - 2009
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2009gl038295
Subject(s) - geology , fault (geology) , thrust , seismology , homogeneous , boundary (topology) , thrust fault , earthquake rupture , finite element method , deformation (meteorology) , boundary value problem , tsunami earthquake , structural engineering , aerospace engineering , physics , engineering , mathematical analysis , oceanography , mathematics , quantum mechanics , thermodynamics
The geometry of a fault system can have significant effects on tsunami generation, but most tsunami models to date have not investigated the dynamic processes that determine which path rupture will take in a complex fault system. To gain insight into this problem, we use the 3D finite element method to model the dynamics of a plate boundary/splay fault system. We use the resulting ground deformation as a time‐dependent boundary condition for a 2D shallow‐water hydrodynamic tsunami calculation. We find that if the stress distribution is homogeneous, rupture remains on the plate boundary thrust. When a barrier is introduced along the strike of the plate boundary thrust, rupture propagates to the splay faults, and produces a significantly larger tsunami than in the homogeneous case. The results have implications for the dynamics of megathrust earthquakes, and also suggest that dynamic earthquake modeling may be a useful tool in tsunami research.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom