Premium
Intercomparison of homogenization techniques for precipitation data continued: Comparison of two recent Bayesian change point models
Author(s) -
Beaulieu Claudie,
Seidou Ousmane,
Ouarda Taha B. M. J.,
Zhang Xuebin
Publication year - 2009
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2008wr007501
Subject(s) - change detection , series (stratigraphy) , bayesian probability , homogenization (climate) , linear regression , time series , regression , computer science , homogeneous , statistics , mathematics , algorithm , data mining , artificial intelligence , geology , biodiversity , paleontology , ecology , combinatorics , biology
In this paper, two new Bayesian change point techniques are described and compared to eight other techniques presented in previous work to detect inhomogeneities in climatic series. An inhomogeneity can be defined as a change point (a time point in a series such that the observations have a different distribution before and after this time) in the data series induced from changes in measurement conditions at a given station. It is important to be able to detect and correct an inhomogeneity, as it can interfere with the real climate change signal. The first technique is a Bayesian method of multiple change point detection in a multiple linear regression. The second one allows the detection of a single change point in a multiple linear regression. These two techniques have never been used for homogenization purposes. The ability of the two techniques to discriminate homogeneous and inhomogeneous series was evaluated using simulated data series. Various sets of synthetic series (homogeneous, with a single shift, and with multiple shifts) representing the typical total annual precipitation observed in the southern and central parts of the province of Quebec, Canada, and nearby areas were generated for the purpose of this study. The two techniques gave small false detection rates on the homogeneous series. Furthermore, the two techniques proved to be efficient for the detection of a single shift in a series. For the series with multiple shifts, the Bayesian method of multiple change point detection performed better. An application to a real data set is also provided and validated with the available metadata.