
Meteorological processes forcing Saharan dust emission inferred from MSG‐SEVIRI observations of subdaily dust source activation and numerical models
Author(s) -
Schepanski K.,
Tegen I.,
Todd M. C.,
Heinold B.,
Bönisch G.,
Laurent B.,
Macke A.
Publication year - 2009
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2008jd010325
Subject(s) - mineral dust , environmental science , forcing (mathematics) , atmospheric sciences , climatology , meteorology , outflow , aerosol , geology , geography
Fifteen‐minute Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) infrared dust index images are used to identify dust source areas. The observations of dust source activation (DSA) are compiled in a 1° × 1° map for the Sahara and Sahel, including temporal information at 3‐hourly resolution. Here we use this data set to identify the most active dust source areas and the time of day when dust source activation occurs most frequently. In the Sahara desert 65% of DSA (March 2006 to February 2008) occurs during 0600–0900 UTC, pointing toward an important role of the breakdown of the nocturnal low‐level jet (LLJ) for dust mobilization. Other meteorological mechanisms may lead to dust mobilization including density currents initiated by deep convective systems which mobilize dust fronts (haboobs) occurring preferentially in the afternoon hours and cyclonic activities. The role of the nocturnal LLJ for dust mobilization in the Sahara is corroborated by regional model studies and analysis of meteorological station data.