z-logo
open-access-imgOpen Access
Ozone ensemble forecast with machine learning algorithms
Author(s) -
Mallet Vivien,
Stoltz Gilles,
Mauricette Boris
Publication year - 2009
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2008jd009978
Subject(s) - computer science , algorithm , ensemble learning , ozone , meteorology , machine learning , artificial intelligence , environmental science , physics
We apply machine learning algorithms to perform sequential aggregation of ozone forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the modeling system Polyphemus. The ensemble simulations are obtained by changes in the physical parameterizations, the numerical schemes, and the input data to the models. The simulations are carried out for summer 2001 over western Europe in order to forecast ozone daily peaks and ozone hourly concentrations. On the basis of past observations and past model forecasts, the learning algorithms produce a weight for each model. A convex or linear combination of the model forecasts is then formed with these weights. This process is repeated for each round of forecasting and is therefore called sequential aggregation. The aggregated forecasts demonstrate good results; for instance, they always show better performance than the best model in the ensemble and they even compete against the best constant linear combination. In addition, the machine learning algorithms come with theoretical guarantees with respect to their performance, that hold for all possible sequences of observations, even nonstochastic ones. Our study also demonstrates the robustness of the methods. We therefore conclude that these aggregation methods are very relevant for operational forecasts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here