Open Access
Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds
Author(s) -
Mahadevan A.,
Tandon A.,
Ferrari R.
Publication year - 2010
Publication title -
journal of geophysical research: oceans
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2008jc005203
Subject(s) - isopycnal , eddy , baroclinity , mixed layer , geology , buoyancy , stratification (seeds) , front (military) , geostrophic wind , halocline , advection , wind stress , barotropic fluid , frontogenesis , ekman transport , mechanics , geophysics , atmospheric sciences , turbulence , oceanography , upwelling , physics , mesoscale meteorology , seed dormancy , germination , botany , salinity , dormancy , biology , thermodynamics
Submesoscale eddies generated by baroclinic instability of upper ocean fronts lead to rapid restratification of the mixed layer on a time scale of days. This restratification can be opposed by a down‐front wind stress (acting in the direction of the geostrophic velocity) that drives a surface Ekman flow from the dense side to the light side of the front to arrest the slumping of isopycnals. A scaling diagnostic is suggested to determine whether the effect of eddies or wind dominates under different conditions. Using a numerical model, we investigate the juxtaposition of submesoscale eddies and down‐front winds acting on the mixed layer. By estimating the eddy‐induced overturning stream function in the mixed layer, we separate the along‐ and cross‐isopycnal fluxes of buoyancy associated with submesoscale mixed layer eddies and demonstrate the need for parameterization of the advective, along‐isopycnal flux. Though the cross‐front transport of buoyancy induced by the down‐front component of the wind opposes restratification by mixed layer eddies, it becomes diminished as the eddies and growth of the frontal instability disrupt alignment between the wind and frontal axis.