z-logo
Premium
A study of lightning flashes attending periods of banded snowfall
Author(s) -
Market Patrick S.,
Becker Amy E.
Publication year - 2009
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2008gl036317
Subject(s) - snow , thunderstorm , lightning (connector) , meteorology , atmospheric sciences , radar , geology , environmental science , physics , computer science , telecommunications , power (physics) , quantum mechanics
Lightning flashes (N = 1088) associated with 24 thundersnow events in the central United States were analyzed to document flash polarity, signal strength, and multiplicity. Negative lightning flashes (N = 872; 80%) dominated positive flashes (N = 216; 20%) with wintry precipitation in this study, which stands in contrast to the majority of the research done on winter thunderstorms (primarily in Japan). Otherwise, limited work has been done, although thundersnow has been documented in the mid‐latitudes of North America, Europe and Asia. Statistics on peak amplitude were determined for negative (positive) flashes, yielding mean and standard deviation values of −24 kA ± 22 kA (+38 kA ± 34 kA). A subset of winter lightning events (N = 16) were then sought that occurred with banded (single or multiple) snowfall, as banding often denotes greater organization in the atmosphere (e.g., a jet streak aloft to aid in ascent, or a low level jet streak to aid with moisture and thermal transport) and thus the potential for deeper snow totals. Radar reflectivity values were recorded at the location of each lightning flash, as well as the maximum radar reflectivity within the associated snow band. The location of the lightning activity within the snow band was also noted as being either leading edge (LE), trailing edge (TE), core (C), or not correlated (NC), with respect to the motion of the parent band. The majority of lightning flashes were found downstream of areas of highest radar reflectivity with respect to the motion of the snow bands, and not with the highest reflectivity values. If one uses the highest reflectivity values in a snowband as a proxy for the greatest surface snowfall intensity, then the ground terminus of a cloud‐to‐ground lightning (CG) flash is often not co‐located with the heaviest snowfall rates. However, the work completed here does place the location of the typical CG flash ∼15 km downstream of the snowband location, so one could use the occurrence of lightning as a nowcasting tool for impending snow intensification at the site of the CG flash.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here