Premium
A millennial‐scale record of Arctic Ocean sea ice variability and the demise of the Ellesmere Island ice shelves
Author(s) -
England John H.,
Lakeman Thomas R.,
Lemmen Donald S.,
Bednarski Jan M.,
Stewart Thomas G.,
Evans David J. A.
Publication year - 2008
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2008gl034470
Subject(s) - sea ice , oceanography , geology , arctic ice pack , antarctic sea ice , ice shelf , arctic sea ice decline , cryosphere , iceberg , arctic , fjord , fast ice , climatology , physical geography , geography
Sea‐ice ice shelves, at the apex of North America (>80° N), constitute the oldest sea ice in the Northern Hemisphere. We document the establishment and subsequent stability of the Ward Hunt Ice Shelf, and multiyear landfast sea ice in adjacent fiords, using 69 radiocarbon dates obtained on Holocene driftwood deposited prior to coastal blockage. These dates (47 of which are new) record a hiatus in driftwood deposition beginning ∼5500 cal yr BP, marking the inception of widespread multiyear landfast sea ice across northern Ellesmere Island. This chronology, together with historical observations of ice shelf breakup (∼1950 to present), provides the only millennial‐scale record of Arctic Ocean sea ice variability to which the past three decades of satellite surveillance can be compared. Removal of the remaining ice shelves would be unprecedented in the last 5500 years. This highlights the impact of ongoing 20th and 21st century climate warming that continues to break up the remaining ice shelves and soon may cause historically ice‐filled fiords nearby to open seasonally.