z-logo
Premium
Primary oil migration through buoyancy‐driven multiple fracture propagation: Oil velocity and flux
Author(s) -
Jin Z.H.,
Johnson S. E.
Publication year - 2008
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2008gl033645
Subject(s) - fracture mechanics , buoyancy , fracture (geology) , geology , mechanics , flux (metallurgy) , lubrication theory , lubrication , geotechnical engineering , materials science , composite material , physics , metallurgy
We present a fracture‐mechanics‐based formulation to investigate primary oil migration through the propagation of an array of periodic, parallel fractures in a sedimentary rock with elevated pore fluid pressure. The rock is assumed to be a linearly elastic medium. The fracture propagation and hence oil migration velocity are determined using a fracture mechanics criterion together with the lubrication theory of fluid mechanics. We find that fracture interactions have profound effects on the primary oil migration behavior. For a given fracture length, the mass flux of oil migration decreases dramatically with an increase in fracture density. The reduced oil flux is due to the decreased fracture propagation velocity as well as the narrowed fracture opening that result from the fracture interactions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here