z-logo
open-access-imgOpen Access
How biogenic terpenes govern the correlation between sulfuric acid concentrations and new particle formation
Author(s) -
Bonn B.,
Kulmala M.,
Riipinen I.,
Sihto S.L.,
Ruuskanen T. M.
Publication year - 2008
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2007jd009327
Subject(s) - sulfuric acid , nucleation , particle (ecology) , chemistry , inorganic chemistry , chemical physics , mineralogy , organic chemistry , geology , oceanography
New particle formation has been observed to take place all around the world. However, because of the inability to determine the chemical composition of the smallest clusters or particles, indirect tools such as the correlation between nucleation rate and measured sulfuric acid concentrations have been used to infer the nucleation mechanism. In this study we describe the observed correlation with gaseous sulfuric acid concentrations by interactions of sesquiterpene oxidation products with sulfuric acid. Two formation pathways of nucleation initiating molecules are considered. The interaction of sulfuric acid with organic sulfates, which are formed from stabilized Criegee intermediates (sCIs, formed from sesquiterpenes), can be used to explain the observed squared relationship between particle formation rate and ambient sulfuric acid concentrations. The corresponding linear dependence is explained with the participation of secondary ozonides, which are formed from sCIs and aldehydes. Both pathways are negatively affected by increasing water vapor concentration as observed in recent studies. In order to check the assumptions made we apply the derived nucleation coefficients to measurements of the BACCI/QUEST IV campaign made during spring 2005 in Hyytiälä, Finland. A reasonable agreement between the measurement data and the predicted nucleation rates is found, giving support for the presented nucleation description.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here