
Summer‐winter hemisphere asymmetry of the preliminary reverse impulse of geomagnetic storm sudden commencements at midlatitudes
Author(s) -
Sastri J. H.,
Yumoto K.,
Rao J. V. S. V.,
Ikeda A.
Publication year - 2008
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2007ja012968
Subject(s) - solstice , southern hemisphere , middle latitudes , earth's magnetic field , northern hemisphere , latitude , geomagnetic storm , atmospheric sciences , equinox , climatology , geology , geodesy , physics , quantum mechanics , magnetic field
We present event‐specific observational evidence for the prevalence of a summer‐winter hemisphere asymmetry of the preliminary reverse impulse (PRI) of geomagnetic storm sudden commencements (SSCs) at midlatitudes of the local afternoon sector. The evidence is culled from the archived 10‐s resolution data of midlatitude stations (geomagnetic latitude 23–46°) of the MM 210 magnetometer network. The hemisphere asymmetry is characterized by a larger peak amplitude of PRI in the summer hemisphere than in the winter hemisphere, and this feature is more prominently seen in the December solstice compared to the June solstice. In the December solstice SSC event, the amplitude of the preliminary reverse impulse, PRI (4.8 nT) at BRV (geomagnetic latitude 36.6°S) in the summer hemisphere is larger by a factor of 6 compared to that at MSR (geomagnetic latitude 37.6°N) in the winter hemisphere. The asymmetry is also apparent at lower latitudes: while the PRI assumed an amplitude of 3.7 nT at LEM (geomagnetic latitude 34.1°S), it is barely discernible at ONW (geomagnetic latitude 31.6°N) in the winter hemisphere. In the June solstice event, the PRI amplitude at RIK (geomagnetic latitude 34.7°N) in the summer hemisphere is higher by a factor of 3.44 compared to that at LEM (geomagnetic latitude 34.1°S) in the winter hemisphere. A similar behavior is also apparent in the equinox event though the hemisphere asymmetry of the preliminary reverse impulse (PRI) here is of moderate strength. In all the SSC events studied, the main impulse (MI) amplitude also exhibited the well‐known summer‐winter asymmetry, but the hemisphere asymmetry is more prominent with the preliminary reverse impulse (PRI) than with the main impulse (MI). Physical processes that could possibly account for the hemisphere asymmetry evidenced of the afternoon PRI at midlatitudes are discussed.