z-logo
open-access-imgOpen Access
Criterion for interchange instability in a plasma connected to a conducting ionosphere
Author(s) -
Xing X.,
Wolf R. A.
Publication year - 2007
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2007ja012535
Subject(s) - physics , plasma sheet , flux tube , instability , plasma , solar wind , ionosphere , mechanics , computational physics , magnetic flux , geophysics , magnetosphere , magnetic field , classical mechanics , quantum mechanics
We have combined two empirical numerical models to estimate the entropy parameter PV 5/3 in the plasma sheet, where P is the plasma sheet pressure and V = ∫ is the volume of a flux tube containing one unit of magnetic flux. The Tsyganenko and Stern (1996) magnetic field model is used to calculate the flux tube volume, and the Tsyganenko and Mukai (2003) plasma sheet statistical model is used to calculate the plasma sheet pressure. Contour plots for PV 5/3 and V in the equatorial plane are presented for various solar wind conditions. These empirical models suggest that, although both PV 5/3 and V generally increase tailward, their gradients are generally not parallel or antiparallel to each other, whereas most theoretical discussions of interchange instability assume that the vectors are lined up. The Vasyliunas equation implies that the Birkeland current is proportional to the cross product of ∇ PV 5/3 and ∇ V , so that region 1 and region 2 Birkeland current flow between plasma sheet and ionosphere confirms that the gradients of entropy parameter and flux tube volume are not generally parallel. We present analytical calculations to investigate the criterion for interchange instability in a quasi‐static, low‐ β plasma that is connected to a conducting ionosphere and has ∇ PV 5/3 and ∇ V at an arbitrary angle α , which implies shear flows. A boundary layer is assumed to separate two regions with different but uniform PV 5/3 . The main conclusion is that the system is interchange unstable if α > π /2. The results suggest that the statistical average plasma sheet configuration is interchange stable since the statistical plasma sheet models indicate that α < π /2. Our conclusion is quite different from analyses that neglect shear flow since they imply instability unless ∇ PV 5/3 and ∇ V are exactly parallel.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here