z-logo
open-access-imgOpen Access
Global model comparison with Millstone Hill during September 2005
Author(s) -
Pawlowski David J.,
Ridley Aaron J.,
Kim Insung,
Bernstein Dennis S.
Publication year - 2008
Publication title -
journal of geophysical research: space physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2007ja012390
Subject(s) - millstone hill , thermosphere , incoherent scatter , ionosphere , atmospheric sciences , geomagnetic storm , electron density , altitude (triangle) , environmental science , earth's magnetic field , latitude , solar minimum , storm , geology , solar cycle , physics , meteorology , electron , geophysics , mathematics , solar wind , geodesy , plasma , quantum mechanics , geometry , magnetic field
A direct comparison between simulation results from the Global Ionosphere Thermosphere Model (GITM) and measurements from the Millstone Hill incoherent scatter radar (ISR) during the month of September 2005 is presented. Electron density, electron temperature, and ion temperature results are compared at two altitudes where ISR data is the most abundant. The model results are produced, first using GITM running in one dimension, which allows comparison at the Millstone Hill location throughout the entire month. The model results have errors ranging from 20% to 50% over the course of the month. In addition, the F2 peak electron density (NmF2) and height of the peak (HmF2) are compared for the month. On average the model indicates higher peak electron densities as well as a higher HmF2. During the time period from 9 September through 13 September, the trends in the data are different than the trends in the model results. These differences are due to active solar and geomagnetic conditions during this time period. Three‐dimensional (3‐D) GITM results are presented during these active conditions, and it is found that the 3‐D model results replicate the trends in the data more closely. GITM is able to capture the positive storm phase that occurred late on 10 September but has the most difficulty capturing the density depletion on 11 and 12 September that is seen in the data. This is probably a result of the use of statistical high‐latitude and solar drivers that are not as accurate during storm time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom