Premium
Separating the effects of albedo from eco‐physiological changes on surface temperature along a successional chronosequence in the southeastern United States
Author(s) -
Juang JehnYih,
Katul Gabriel,
Siqueira Mario,
Stoy Paul,
Novick Kimberly
Publication year - 2007
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2007gl031296
Subject(s) - chronosequence , albedo (alchemy) , environmental science , atmospheric sciences , ecosystem , climatology , ecology , geology , soil science , soil water , biology , art , performance art , art history
In the southeastern United States (SE), the conversion of abandoned agricultural land to forests is the dominant feature of land‐cover change. However, few attempts have been made to quantify the impact of such conversion on surface temperature. Here, this issue is explored experimentally and analytically in three adjacent ecosystems (a grass‐covered old‐field, OF, a planted pine forest, PP, and a hardwood forest, HW) representing a successional chronosequence in the SE. The results showed that changes in albedo alone can warm the surface by 0.9°C for the OF‐to‐PP conversion, and 0.7°C for the OF‐to‐HW conversion on annual time scales. However, changes in eco‐physiological and aerodynamic attributes alone can cool the surface by 2.9 and 2.1°C, respectively. Both model and measurements consistently suggest a stronger over‐all surface cooling for the OF‐to‐PP conversion, and the reason is attributed to leaf area variations and its impacts on boundary layer conductance.