Premium
Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone
Author(s) -
Zhang Henian,
McFarquhar Greg M.,
Saleeby Stephen M.,
Cotton William R.
Publication year - 2007
Publication title -
geophysical research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.007
H-Index - 273
eISSN - 1944-8007
pISSN - 0094-8276
DOI - 10.1029/2007gl029876
Subject(s) - tropical cyclone , climatology , environmental science , atmospheric sciences , cyclone (programming language) , meteorology , african easterly jet , tropical cyclone rainfall forecasting , tropical cyclogenesis , geology , tropical wave , geography , field programmable gate array , computer science , computer hardware
The impact of dust in the Saharan Air Layer (SAL) acting as cloud condensation nuclei (CCN) on the evolution of a tropical cyclone (TC) was examined by conducting simulations initialized with an idealized pre‐TC mesoscale convective vortex (MCV) using the Regional Atmospheric Modeling System (RAMS). Increasing the background CCN concentration from 100 to 1000 and 2000 cm −3 in a layer between 1 and 5 km led to increases in averaged cloud droplet number concentration, and decreases in cloud droplet mean mass diameter through the entire simulation except during the initial spin‐up. Dust in the SAL as CCN influenced the TC development by inducing changes in the hydrometeor properties, modifying the storm diabatic heating distribution and thermodynamic structure, and ultimately influencing the TC intensity through complex dynamical responses. The simulated storm intensities differed by up to 22 hPa depending on CCN concentration. The impact of CCN on storm intensity was sensitive to the background giant CCN (GCCN) vertical profile and presumably other environmental factors. The physical processes responsible for the impact of dust as nucleating aerosols on TC development need to be examined in the future under a wide range of environmental conditions.