Premium
Understanding catchment behavior through stepwise model concept improvement
Author(s) -
Fenicia Fabrizio,
Savenije Hubert H. G.,
Matgen Patrick,
Pfister Laurent
Publication year - 2008
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2006wr005563
Subject(s) - interception , drainage basin , environmental science , dimension (graph theory) , exploit , antecedent (behavioral psychology) , computer science , hydrology (agriculture) , structural basin , geology , geography , mathematics , ecology , cartography , geotechnical engineering , psychology , developmental psychology , computer security , pure mathematics , biology , paleontology
Lack of data is one of the main limitations for hydrological modeling. However, it is often used as a justification for over simplifying, poorly performing models. If we want to enhance our understanding of hydrological systems, it is important to fully exploit the information contained in the available data, and to learn from model deficiencies. In this paper, we propose a methodology where we systematically update the model structure, progressively incorporating new hypotheses of catchment behavior. We apply this methodology to the Alzette river basin in Luxembourg, showing how stepwise model improvement helps to identify the behavior of this catchment. We show that the most significant improvement of the evolving model structure is associated to the characterization of antecedent wetness. This is improved accounting for interception, which affects vertical storage distribution, and accounting for rainfall spatial heterogeneity, which influences storage variations in the horizontal dimension. Overall, our results suggested that, due to the damping effect of the basin, the description of fast catchment response benefits more from spatially distributed information than that of slow catchment response.