Premium
A wetland hydrology and water quality model incorporating surface water/groundwater interactions
Author(s) -
KazezyılmazAlhan Cevza Melek,
Medina Miguel A.,
Richardson Curtis J.
Publication year - 2007
Publication title -
water resources research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.863
H-Index - 217
eISSN - 1944-7973
pISSN - 0043-1397
DOI - 10.1029/2006wr005003
Subject(s) - wetland , surface runoff , environmental science , hydrology (agriculture) , groundwater recharge , surface water , water quality , groundwater , subsurface flow , streamflow , groundwater model , environmental engineering , drainage basin , aquifer , geology , ecology , geography , geotechnical engineering , cartography , biology
In the last two decades the beneficial aspects of constructed treatment wetlands have been studied extensively. However, the importance of restored wetlands as a best management practice to improve the water quality of storm water runoff has only recently been appreciated. Furthermore, investigating surface water/groundwater interactions within wetlands is now acknowledged to be essential in order to better understand the effect of wetland hydrology on water quality. In this study, the development of a general comprehensive wetland model Wetland Solute Transport Dynamics (WETSAND) that has both surface flow and solute transport components is presented. The model incorporates surface water/groundwater interactions and accounts for upstream contributions from urbanized areas. The effect of restored wetlands on storm water runoff is also investigated by routing the overland flow through the wetland area, collecting the runoff within the stream, and transporting it to the receiving water using diffusion wave routing techniques. The computed velocity profiles are subsequently used to obtain water quality concentration distributions in wetland areas. The water quality component solves the advection‐dispersion equation for several nitrogen and phosphorus constituents, and it also incorporates the surface water/groundwater interactions by including the incoming/outgoing mass due to the groundwater recharge/discharge. In addition, output from the Storm Water Management Model (SWMM5) is incorporated into this conceptual wetland model to simulate the runoff quantity and quality flowing into a wetland area from upstream urban sources. Additionally, the model can simulate a water control structure using storage routing principles and known stage‐discharge spillway relationships.