z-logo
open-access-imgOpen Access
The role of historical fire disturbance in the carbon dynamics of the pan‐boreal region: A process‐based analysis
Author(s) -
Balshi M. S.,
McGuire A. D.,
Zhuang Q.,
Melillo J.,
Kicklighter D. W.,
Kasischke E.,
Wirth C.,
Flannigan M.,
Harden J.,
Clein J. S.,
Burnside T. J.,
McAllister J.,
Kurz W. A.,
Apps M.,
Shvidenko A.
Publication year - 2007
Publication title -
journal of geophysical research: biogeosciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2006jg000380
Subject(s) - environmental science , carbon sink , ecosystem , disturbance (geology) , fire regime , carbon cycle , climate change , context (archaeology) , climatology , boreal , terrestrial ecosystem , taiga , atmospheric sciences , ecology , geography , geology , archaeology , biology , paleontology
Wildfire is a common occurrence in ecosystems of northern high latitudes, and changes in the fire regime of this region have consequences for carbon feedbacks to the climate system. To improve our understanding of how wildfire influences carbon dynamics of this region, we used the process‐based Terrestrial Ecosystem Model to simulate fire emissions and changes in carbon storage north of 45°N from the start of spatially explicit historically recorded fire records in the twentieth century through 2002, and evaluated the role of fire in the carbon dynamics of the region within the context of ecosystem responses to changes in atmospheric CO 2 concentration and climate. Our analysis indicates that fire plays an important role in interannual and decadal scale variation of source/sink relationships of northern terrestrial ecosystems and also suggests that atmospheric CO 2 may be important to consider in addition to changes in climate and fire disturbance. There are substantial uncertainties in the effects of fire on carbon storage in our simulations. These uncertainties are associated with sparse fire data for northern Eurasia, uncertainty in estimating carbon consumption, and difficulty in verifying assumptions about the representation of fires that occurred prior to the start of the historical fire record. To improve the ability to better predict how fire will influence carbon storage of this region in the future, new analyses of the retrospective role of fire in the carbon dynamics of northern high latitudes should address these uncertainties.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here