z-logo
open-access-imgOpen Access
Volcanism and volatile recycling on a one‐plate planet: Applications to Venus
Author(s) -
ElkinsTanton L. T.,
Smrekar S. E.,
Hess P. C.,
Parmentier E. M.
Publication year - 2007
Publication title -
journal of geophysical research: planets
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2006je002793
Subject(s) - venus , mantle (geology) , geology , volcanism , lithosphere , volcano , earth science , astrobiology , crust , volatiles , geochemistry , planet , geophysics , petrology , tectonics , paleontology , astronomy , physics
The surface of Venus displays volcanic features indicating eruption of lavas with a wide range of viscosities. We present numerical experiments showing that lithospheric gravitational instabilities can produce lavas with compositions consistent with the range of volcanic forms seen on Venus. The presence of incompatible elements and their oxides (specifically, water, carbon dioxide, and alkali elements) in trace‐ to percent‐level concentrations in the Venusian mantle allows the formation of a variety of magmatic source regions. The pressure and temperature paths that the dense lithospheric materials travel as they sink into the Venusian mantle indicate that the lithospheric material may devolatilize as it sinks, enriching the surrounding upper mantle, or it may itself melt. These processes can produce magmas with a variety of compositions and viscosities, potentially consistent with the range of Venusian volcanic forms. These processes also suggest that Venus may recycle incompatible elements internally. Indeed, if Venus began with an internal volatile content, then no amount of partial melting can make it entirely volatile‐free even in the absence of recycling into the interior. These models therefore suggest geodynamic processes that can produce a range of magmatic activity and retain some interior volatiles on a one‐plate planet.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here