
Seasonal variability of GPS‐derived zenith tropospheric delay (1994–2006) and climate implications
Author(s) -
Jin Shuanggen,
Park JongUk,
Cho JungHo,
Park PilHo
Publication year - 2007
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2006jd007772
Subject(s) - zenith , northern hemisphere , latitude , environmental science , troposphere , southern hemisphere , climatology , amplitude , altitude (triangle) , atmospheric sciences , atmosphere (unit) , seasonality , meteorology , geology , geodesy , geography , physics , statistics , geometry , mathematics , quantum mechanics
The total zenith tropospheric delay (ZTD) is an important parameter of the atmosphere and directly or indirectly reflects the weather and climate processes and variations. In this paper the ZTD time series with a 2‐hour resolution are derived from globally distributed 150 International GPS Service (IGS) stations (1994–2006), which are used to investigate the secular trend and seasonal variation of ZTD as well as its implications in climate. The mean secular ZTD variation trend is about 1.5 ± 0.001 mm/yr at all IGS stations. The secular variations are systematically increasing in most parts of the Northern Hemisphere and decreasing in most parts of the Southern Hemisphere. Furthermore, the ZTD trends are almost symmetrically decreasing with increasing altitude, while the summation of upward and downward trends at globally distributed GPS sites is almost zero, possibly reflecting that the secular ZTD variation is in balance at a global scale. Significant annual variations of ZTD are found over all GPS stations with the amplitude from 25 to 75 mm. The annual variation amplitudes of ZTD near oceanic coasts are generally larger than in the continental inland. Larger amplitudes of annual ZTD variation are mostly found at middle latitudes (near 20°S and 40°N) and smaller amplitudes of annual ZTD variation are located at higher latitudes (e.g., Antarctic) and the equator areas. The phase of annual ZTD variation is about 60° in the Southern Hemisphere (about February, summer) and about 240° in the Northern Hemisphere (about August, summer). The mean amplitude of semiannual ZTD variations is about 10 mm, much smaller than annual variations. The semiannual amplitudes are larger in the Northern Hemisphere than in the Southern Hemisphere, indicating that the semiannual variation amplitudes of ZTD in the Southern Hemisphere are not significant. In addition, the higher‐frequency variability (RMS of ZTD residuals) ranges from 15 to 65 mm of delay, depending on altitude of the station. Inland stations tend to have lower variability and sites at ocean and coasts have higher variability. These seasonal ZTD cycles are due mainly to the wet component variations (ZWD).