Open Access
Ice core paleovolcanic records from the St. Elias Mountains, Yukon, Canada
Author(s) -
Yalcin Kaplan,
Wake Cameron P.,
Kreutz Karl J.,
Germani Mark S.,
Whitlow Sallie I.
Publication year - 2007
Publication title -
journal of geophysical research: atmospheres
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2006jd007497
Subject(s) - ice field , ice core , geology , tephra , volcano , oceanography , physical geography , paleontology , geography , glacier
We previously reported a record of regionally significant volcanic eruptions in the North Pacific using an ice core from Eclipse Icefield (St. Elias Mountains, Yukon, Canada). The acquisition of two new ice cores from Eclipse Icefield, along with the previously available Eclipse Icefield and Mount Logan Northwest Col ice cores, allows us to extend our record of North Pacific volcanism to 550 years before present using a suite of four ice cores spanning an elevation range of 3–5 km. Comparison of volcanic sulfate flux records demonstrates that the results are highly reproducible, especially for the largest eruptions such as Katmai (A.D. 1912). Correlation of volcanic sulfate signals with historically documented eruptions indicates that at least one‐third of the eruptions recorded in St. Elias ice cores are from Alaskan and Kamchatkan volcanoes. Although there are several moderately large (volcanic explosivity index (VEI) ≥ 4) eruptions recorded in only one core from Eclipse Icefield, the use of multiple cores provides signals in at least one core from all known VEI ≥ 4 eruptions in Alaska and Kamchatka since A.D. 1829. Tephrochronological evidence from the Eclipse ice cores documents eruptions in Alaska (Westdahl, Redoubt, Trident, and Katmai), Kamchatka (Avachinsky, Kliuchevoskoi, and Ksudach), and Iceland (Hekla). Several unidentified tephra‐bearing horizons, with available geochemical evidence suggesting Alaskan and Kamchatkan sources, were also found. We present a reconstruction of annual volcanic sulfate loading for the North Pacific troposphere based on our ice core data, and we provide a detailed assessment of the atmospheric and climatic effects of the Katmai eruption.