z-logo
open-access-imgOpen Access
Compressible thermochemical convection and application to lower mantle structures
Author(s) -
Tan Eh,
Gurnis Michael
Publication year - 2007
Publication title -
journal of geophysical research: solid earth
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.67
H-Index - 298
eISSN - 2156-2202
pISSN - 0148-0227
DOI - 10.1029/2006jb004505
Subject(s) - geology , compressibility , thermoelastic damping , plume , mantle (geology) , geophysics , bulk modulus , mantle convection , convection , transition zone , hotspot (geology) , thermal , mechanics , thermodynamics , seismology , subduction , tectonics , physics
A new finite element code for compressible thermochemical convection is developed to study the stability of a chemical layer at the base of the mantle. Using composition‐dependent compressibility and a density difference between compositions at a reference pressure, a composition‐dependent density profile is derived. Together with depth‐dependent thermal expansion, this combination of parameters yields a wide range of dynamic evolutions for the chemical layer. The chemical structures are classified into five major categories (classical plumes, mushroom‐shaped plume, domes, ridges, and continuous layers) and a few abnormal cases, such as hourglass‐shaped plumes and columnar plumes. Several models have a chemical structure morphologically similar to the African low V S structure in the lower mantle, at least at a single time. Guided by our models, several dynamic scenarios are proposed for the dynamic nature of the lower mantle low‐velocity structures (a.k.a. superplumes), including plumes at an early stage, plume clusters, ridges, passive piles, sluggish domes, and high‐bulk‐modulus domes. We predict seismic velocity anomalies from these dynamic models. The thermoelastic parameters used in the conversion are additional constraints. We compare the density structure with normal mode inversion, the predicted seismic signature observations, and the required thermoelastic parameters with mineral physics data. Among the proposed scenarios, only the scenario of high‐bulk‐modulus domes satisfies all constraints simultaneously. The implication on the geochemistry and mineralogy of lower mantle chemical structures is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here